【强化学习】深度Q网络(DQN)求解倒立摆问题 + Pytorch代码实战


一、倒立摆问题介绍

Agent 必须在两个动作之间做出决定 - 向左或向右移动推车 - 以使连接到它的杆保持直立。
在这里插入图片描述

二、深度Q网络简介

在这里插入图片描述

上图所示为一般的深度 Q \mathrm{Q} Q 网络算法。

深度 Q \mathrm{Q} Q 网络算法是这样的,我们初始化两个网络 :估计网络 Q Q Q 和 目标网络 Q ^ , Q ^ \hat{Q} , \hat{Q} Q^Q^ 就等于 Q Q Q一开始 目标网络 Q ^ \hat{Q} Q^ 与原来的 Q Q Q 网络是一样的

在每一个回合中,我们用演员与环境交互,在每一次交互的过程中,都会得到一个 状态 s t s_t st ,会采取某一个动作 a t 。 a_{t 。} at 怎么知道采取哪一个动作 a t a_t at 呢? 我们就根据现在的 Q函数,但是要有探索的机制。比如 我们用玻尔兹曼探索或是 ε \varepsilon ε-贪心探索,接下来得到奖励 r t r_t rt ,进入状态 s t + 1 s_{t+1} st+1

所以现在收集到一笔数据 ( s t 、 a t 、 r t 、 s t + 1 ) \left(s_t 、 a_t 、 r_t 、 s_{t+1}\right) (statrtst+1) ,我们将其放到回放缓冲区里面。如果回放缓冲区满了,我们就把一些旧的数据丢掉。

接下来我们就从回放缓冲区里面去采样数据,采样到的是 ( s i 、 a i 、 r i 、 s i + 1 ) \left(s_i 、 a_i 、 r_i 、 s_{i+1}\right) (siairisi+1) 。这笔数据与刚放进去的不一定是同一笔,我们可能抽到旧的。要注意的是, 我们采样出来不是一笔数据,采样出来的是一个批量的数据,采样一些经验出来。

接下来就是计算目标。假设我们采样出 一笔数据,根据这笔数据去计算目标。目标要用目标网络 Q ^ \hat{Q} Q^ 来计算。目标是:
y = r i + max ⁡ a Q ^ ( s i + 1 , a ) y=r_i+\max _a \hat{Q}\left(s_{i+1}, a\right) y=ri+amaxQ^(si+1,a)
其中, a a a 是让 Q ^ \hat{Q} Q^ 值最大的动作。因为我们在状态 s i + 1 s_{i+1} si+1 会采取的动作 a a a 就是可以让 Q ^ \hat{Q} Q^ 值最大的那一个动作。接下来我们要 更新 Q \mathrm{Q} Q 值,就把它当作一个回归问题。我们希望 Q ( s i , a i ) Q\left(s_i, a_i\right) Q(si,ai) 与目标越接近越好。

假设已经更新了一定的次数,比如 C C C 次, 设 C = 100 C=100 C=100 ,那我们就把 Q ^ \hat{Q} Q^ 设成 Q Q Q ,这就是深度Q网络算法。

三、详细资料

关于更加详细的深度Q网络的介绍,请看我之前发的博客:【EasyRL学习笔记】第六章 DQN 深度Q网络(基本概念)

在学习深度Q网络前你最好能了解以下知识点:

  • 全连接神经网络
  • 神经网络求解分类问题
  • 神经网络基本工作原理
  • Q-Learning算法

四、Python代码实战

4.1 运行前配置

准备好一个RL_Utils.py文件,文件内容可以从我的一篇里博客获取:【RL工具类】强化学习常用函数工具类(Python代码)

这一步很重要,后面需要引入该RL_Utils.py文件

在这里插入图片描述

4.2 主要代码

import argparse
import datetime
import time
import math
import torch.optim as optim
import gym
from torch import nn

# 这里需要改成自己的RL_Utils.py文件的路径
from Python.ReinforcementLearning.EasyRL.RL_Utils import *


# Q网络(3层全连接网络)
class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dim=128):
        """ 初始化q网络,为全连接网络
            input_dim: 输入的特征数即环境的状态维度
            output_dim: 输出的动作维度
        """
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)  # 输入层
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)  # 隐藏层
        self.fc3 = nn.Linear(hidden_dim, output_dim)  # 输出层

    def forward(self, x):
        # 各层对应的激活函数
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)


# 经验回放缓存区
class ReplayBuffer:
    def __init__(self, capacity):
        self.capacity = capacity  # 经验回放的容量
        self.buffer = []  # 缓冲区
        self.position = 0

    def push(self, state, action, reward, next_state, done):
        ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
        '''
        if len(self.buffer) < self.capacity:
            self.buffer.append(None)
        self.buffer[self.position] = (state, action, reward, next_state, done)
        self.position = (self.position + 1) % self.capacity

    def sample(self, batch_size):
        batch = random.sample(self.buffer, batch_size)  # 随机采出小批量转移
        state, action, reward, next_state, done = zip(*batch)  # 解压成状态,动作等
        return state, action, reward, next_state, done

    def __len__(self):
        ''' 返回当前存储的量
        '''
        return len(self.buffer)


# DQN智能体对象
class DQN:
    def __init__(self, model, memory, cfg):

        self.n_actions = cfg['n_actions']
        self.device = torch.device(cfg['device'])
        self.gamma = cfg['gamma']
        ## e-greedy 探索策略参数
        self.sample_count = 0  # 采样次数
        self.epsilon = cfg['epsilon_start']
        self.sample_count = 0
        self.epsilon_start = cfg['epsilon_start']
        self.epsilon_end = cfg['epsilon_end']
        self.epsilon_decay = cfg['epsilon_decay']
        self.batch_size = cfg['batch_size']
        self.policy_net = model.to(self.device)
        self.target_net = model.to(self.device)
        # 初始化的时候,目标Q网络和估计Q网络相等,将策略网络的参数复制给目标网络
        self.target_net.load_state_dict(self.policy_net.state_dict())

        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
        self.memory = memory
        self.update_flag = False

    # 训练过程采样:e-greedy policy
    def sample_action(self, state):
        self.sample_count += 1
        self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
                       math.exp(-1. * self.sample_count / self.epsilon_decay)
        if random.random() > self.epsilon:
            return self.predict_action(state)
        else:
            action = random.randrange(self.n_actions)
        return action

    # 测试过程:以最大Q值选取动作
    def predict_action(self, state):
        with torch.no_grad():
            state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
            q_values = self.policy_net(state)
            action = q_values.max(1)[1].item()
        return action

    def update(self):
        # 当经验缓存区没有满的时候,不进行更新
        if len(self.memory) < self.batch_size:
            return
        else:
            if not self.update_flag:
                print("Begin to update!")
                self.update_flag = True
        # 从经验缓存区随机取出一个batch的数据
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        # 将数据转化成Tensor格式
        state_batch = torch.tensor(np.array(state_batch), device=self.device,
                                   dtype=torch.float)  # shape(batchsize,n_states)
        action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)  # shape(batchsize,1)
        reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(
            1)  # shape(batchsize,1)
        next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device,
                                        dtype=torch.float)  # shape(batchsize,n_states)
        done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1)  # shape(batchsize,1)
        # 计算Q估计
        q_value_batch = self.policy_net(state_batch).gather(dim=1,
                                                            index=action_batch)  # shape(batchsize,1),requires_grad=True
        next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
        # 计算Q现实
        expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch * (1 - done_batch)
        # 计算损失函数MSE(Q估计,Q现实)
        loss = nn.MSELoss()(q_value_batch, expected_q_value_batch)
        # 梯度下降
        self.optimizer.zero_grad()
        loss.backward()
        # 限制梯度的范围,以避免梯度爆炸
        for param in self.policy_net.parameters():
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step()

    def save_model(self, path):
        Path(path).mkdir(parents=True, exist_ok=True)
        torch.save(self.target_net.state_dict(), f"{path}/checkpoint.pt")

    def load_model(self, path):
        self.target_net.load_state_dict(torch.load(f"{path}/checkpoint.pt"))
        for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
            param.data.copy_(target_param.data)


# 训练函数
def train(arg_dict, env, agent):
    # 开始计时
    startTime = time.time()
    print(f"环境名: {arg_dict['env_name']}, 算法名: {arg_dict['algo_name']}, Device: {arg_dict['device']}")
    print("开始训练智能体......")
    rewards = []
    steps = []
    for i_ep in range(arg_dict["train_eps"]):
        ep_reward = 0
        ep_step = 0
        state = env.reset()
        for _ in range(arg_dict['ep_max_steps']):
            # 画图
            if arg_dict['train_render']:
                env.render()
            ep_step += 1
            action = agent.sample_action(state)
            next_state, reward, done, _ = env.step(action)
            agent.memory.push(state, action, reward,
                              next_state, done)
            state = next_state
            agent.update()
            ep_reward += reward
            if done:
                break
        # 目标网络更新
        if (i_ep + 1) % arg_dict["target_update"] == 0:
            agent.target_net.load_state_dict(agent.policy_net.state_dict())
        steps.append(ep_step)
        rewards.append(ep_reward)
        if (i_ep + 1) % 10 == 0:
            print(f'Episode: {i_ep + 1}/{arg_dict["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
    print('训练结束 , 用时: ' + str(time.time() - startTime) + " s")
    # 关闭环境
    env.close()
    return {'episodes': range(len(rewards)), 'rewards': rewards}


# 测试函数
def test(arg_dict, env, agent):
    startTime = time.time()
    print("开始测试智能体......")
    print(f"环境名: {arg_dict['env_name']}, 算法名: {arg_dict['algo_name']}, Device: {arg_dict['device']}")
    rewards = []
    steps = []
    for i_ep in range(arg_dict['test_eps']):
        ep_reward = 0
        ep_step = 0
        state = env.reset()
        for _ in range(arg_dict['ep_max_steps']):
            # 画图
            if arg_dict['test_render']:
                env.render()
            ep_step += 1
            action = agent.predict_action(state)
            next_state, reward, done, _ = env.step(action)
            state = next_state
            ep_reward += reward
            if done:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        print(f"Episode: {i_ep + 1}/{arg_dict['test_eps']},Reward: {ep_reward:.2f}")
    print("测试结束 , 用时: " + str(time.time() - startTime) + " s")
    env.close()
    return {'episodes': range(len(rewards)), 'rewards': rewards}


# 创建环境和智能体
def create_env_agent(arg_dict):
    # 创建环境
    env = gym.make(arg_dict['env_name'])
    # 设置随机种子
    all_seed(env, seed=arg_dict["seed"])
    # 获取状态数
    try:
        n_states = env.observation_space.n
    except AttributeError:
        n_states = env.observation_space.shape[0]
    # 获取动作数
    n_actions = env.action_space.n
    print(f"状态数: {n_states}, 动作数: {n_actions}")
    # 将状态数和动作数加入算法参数字典
    arg_dict.update({"n_states": n_states, "n_actions": n_actions})
    # 实例化智能体对象
    # Q网络模型
    model = MLP(n_states, n_actions, hidden_dim=arg_dict["hidden_dim"])
    # 回放缓存区对象
    memory = ReplayBuffer(arg_dict["memory_capacity"])
    # 智能体
    agent = DQN(model, memory, arg_dict)
    # 返回环境,智能体
    return env, agent


if __name__ == '__main__':
    # 防止报错 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
    os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
    # 获取当前路径
    curr_path = os.path.dirname(os.path.abspath(__file__))
    # 获取当前时间
    curr_time = datetime.datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
    # 相关参数设置
    parser = argparse.ArgumentParser(description="hyper parameters")
    parser.add_argument('--algo_name', default='DQN', type=str, help="name of algorithm")
    parser.add_argument('--env_name', default='CartPole-v0', type=str, help="name of environment")
    parser.add_argument('--train_eps', default=200, type=int, help="episodes of training")
    parser.add_argument('--test_eps', default=20, type=int, help="episodes of testing")
    parser.add_argument('--ep_max_steps', default=100000, type=int,
                        help="steps per episode, much larger value can simulate infinite steps")
    parser.add_argument('--gamma', default=0.95, type=float, help="discounted factor")
    parser.add_argument('--epsilon_start', default=0.95, type=float, help="initial value of epsilon")
    parser.add_argument('--epsilon_end', default=0.01, type=float, help="final value of epsilon")
    parser.add_argument('--epsilon_decay', default=500, type=int,
                        help="decay rate of epsilon, the higher value, the slower decay")
    parser.add_argument('--lr', default=0.0001, type=float, help="learning rate")
    parser.add_argument('--memory_capacity', default=100000, type=int, help="memory capacity")
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--target_update', default=4, type=int)
    parser.add_argument('--hidden_dim', default=256, type=int)
    parser.add_argument('--device', default='cpu', type=str, help="cpu or cuda")
    parser.add_argument('--seed', default=520, type=int, help="seed")
    parser.add_argument('--show_fig', default=False, type=bool, help="if show figure or not")
    parser.add_argument('--save_fig', default=True, type=bool, help="if save figure or not")
    parser.add_argument('--train_render', default=False, type=bool,
                        help="Whether to render the environment during training")
    parser.add_argument('--test_render', default=True, type=bool,
                        help="Whether to render the environment during testing")
    args = parser.parse_args()
    default_args = {'result_path': f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
                    'model_path': f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
                    }
    # 将参数转化为字典 type(dict)
    arg_dict = {**vars(args), **default_args}
    print("算法参数字典:", arg_dict)

    # 创建环境和智能体
    env, agent = create_env_agent(arg_dict)
    # 传入算法参数、环境、智能体,然后开始训练
    res_dic = train(arg_dict, env, agent)
    print("算法返回结果字典:", res_dic)
    # 保存相关信息
    agent.save_model(path=arg_dict['model_path'])
    save_args(arg_dict, path=arg_dict['result_path'])
    save_results(res_dic, tag='train', path=arg_dict['result_path'])
    plot_rewards(res_dic['rewards'], arg_dict, path=arg_dict['result_path'], tag="train")

    # =================================================================================================
    # 创建新环境和智能体用来测试
    print("=" * 300)
    env, agent = create_env_agent(arg_dict)
    # 加载已保存的智能体
    agent.load_model(path=arg_dict['model_path'])
    res_dic = test(arg_dict, env, agent)
    save_results(res_dic, tag='test', path=arg_dict['result_path'])
    plot_rewards(res_dic['rewards'], arg_dict, path=arg_dict['result_path'], tag="test")

4.3 运行结果展示

由于有些输出太长,下面仅展示部分输出

状态数: 4, 动作数: 2
环境名: CartPole-v0, 算法名: DQN, Device: cpu
开始训练智能体......
Begin to update!
Episode: 10/200, Reward: 16.00: Epislon: 0.649
Episode: 20/200, Reward: 12.00: Epislon: 0.473
Episode: 30/200, Reward: 10.00: Epislon: 0.358
Episode: 40/200, Reward: 17.00: Epislon: 0.272
Episode: 50/200, Reward: 18.00: Epislon: 0.212
Episode: 60/200, Reward: 139.00: Epislon: 0.049
Episode: 70/200, Reward: 200.00: Epislon: 0.011
Episode: 80/200, Reward: 200.00: Epislon: 0.010
Episode: 90/200, Reward: 200.00: Epislon: 0.010
Episode: 100/200, Reward: 200.00: Epislon: 0.010
Episode: 110/200, Reward: 200.00: Epislon: 0.010
Episode: 120/200, Reward: 200.00: Epislon: 0.010
Episode: 130/200, Reward: 169.00: Epislon: 0.010
Episode: 140/200, Reward: 200.00: Epislon: 0.010
Episode: 150/200, Reward: 179.00: Epislon: 0.010
Episode: 160/200, Reward: 200.00: Epislon: 0.010
Episode: 170/200, Reward: 170.00: Epislon: 0.010
Episode: 180/200, Reward: 200.00: Epislon: 0.010
Episode: 190/200, Reward: 200.00: Epislon: 0.010
Episode: 200/200, Reward: 165.00: Epislon: 0.010
训练结束 , 用时: 100.28473830223083 s
============================================================================================================================================================================================================================================================================================================
状态数: 4, 动作数: 2
开始测试智能体......
环境名: CartPole-v0, 算法名: DQN, Device: cpu
Episode: 1/20,Reward: 200.00
Episode: 2/20,Reward: 200.00
Episode: 3/20,Reward: 200.00
Episode: 4/20,Reward: 200.00
Episode: 5/20,Reward: 200.00
Episode: 6/20,Reward: 200.00
Episode: 7/20,Reward: 200.00
Episode: 8/20,Reward: 200.00
Episode: 9/20,Reward: 200.00
Episode: 10/20,Reward: 200.00
Episode: 11/20,Reward: 200.00
Episode: 12/20,Reward: 198.00
Episode: 13/20,Reward: 200.00
Episode: 14/20,Reward: 200.00
Episode: 15/20,Reward: 200.00
Episode: 16/20,Reward: 200.00
Episode: 17/20,Reward: 200.00
Episode: 18/20,Reward: 179.00
Episode: 19/20,Reward: 200.00
Episode: 20/20,Reward: 200.00
测试结束 , 用时: 30.37125039100647 s

在这里插入图片描述
在这里插入图片描述

4.4 关于可视化的设置

如果你觉得可视化比较耗时,你可以进行设置,取消可视化。
或者你想看看训练过程的可视化,也可以进行相关设置

在这里插入图片描述