11、循环神经网络RNN
(1)RNN循环神经网络处理带有序列的数据:例如自然语言、股市金融数据等
(2)RNN结构:x1和h0运算后的结果h1再送入下一个RNN Cell中,下图所示的RNN Cell都是相同的。
(3)RNN Cell中的运算如下图所示,Whh的维度为hidden_size x hidden_size,Wih的维度为hidden_size x input_size,由此可以得出一个RNN Cell需要的参数为input_size和hidden_size
(4)构建RNN Cell:假设batchSize=1,seqLen=3表示输入的序列有3个,inputSize为输入维度,hiddenSize为隐层维度
根据以上假设,构建RNN的代码如下:
import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
# (seq, batch, features)
dataset = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(batch_size, hidden_size)
for idx, input in enumerate(dataset):
print('=' * 20, idx, '=' * 20)
print('Input size: ', input.shape)
hidden = cell(input, hidden)
print('outputs size: ', hidden.shape)
print(hidden)
Input size为[1,4],hidden size为[1,2],输出结果:
(5)当有多层不同的RNN Cell,如下图所示,每种颜色表示一种RNN Cell
RNN的输入和h_0的结构如下,num_layers表示RNN有多少层
输出的结构为:
根据以上假设,构建RNN的代码如下:
import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers)
# (seqLen, batchSize, inputSize)
inputs = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
print('Output size:', out.shape)
print('Output:', out)
print('Hidden size: ', hidden.shape)
print('Hidden: ', hidden)
输出结果:
(6)batch_first=True时,inputs和output中需要把batch_size放到首位
代码测试batch_first=True:
import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
# (seqLen, batchSize, inputSize)
inputs = torch.randn(batch_size, seq_len, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
print('Output size:', out.shape)
print('Output:', out)
print('Hidden size: ', hidden.shape)
print('Hidden: ', hidden)
输出维度由[3,1,2]变为[1,3,2]:
(7)独热向量:是指使用N位0或1来对N个状态进行编码,每个状态都有它独立的表示形式,并且其中只有一位为1,其他位都为0
比如我们训练一个模型从输入'hello'中学习出'ohlol',首先需要把字符转成对应的编码,'hello'中共有4种不同的字符,对这四种字符构造字典,然后用独热向量表示输入的数据'hello',独热向量的列数表示inputSize,即有几种不同的输入字符
网络构建:输入的数据在经过一个RNN Cell后,输出的outputSize=4,相当于是对输出做分类,后面的激活函数和损失函数和多分类问题一致,网络结构如下:
代码实现:
# 独热向量
import torch
input_size = 4
hidden_size = 4
batch_size = 1
idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]
one_hot_lookup = [[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]
inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size)
labels = torch.LongTensor(y_data).view(-1, 1)
#print('labels:', labels)
class Model(torch.nn.Module):
def __init__(self, input_size, hidden_size, batch_size):
super(Model, self).__init__()
self.batch_size = batch_size
self.input_size = input_size
self.hidden_size = hidden_size
self.rnncell = torch.nn.RNNCell(input_size=self.input_size,
hidden_size=self.hidden_size)
def forward(self, input, hidden):
hidden = self.rnncell(input, hidden)
return hidden
def init_hidden(self):
return torch.zeros(self.batch_size, self.hidden_size)
net = Model(input_size, hidden_size, batch_size)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.1)
for epoch in range(15):
loss = 0
optimizer.zero_grad()
hidden = net.init_hidden()
print('Predicted string: ', end='')
for input, label in zip(inputs, labels):
hidden = net(input, hidden)
loss += criterion(hidden, label)
_, idx = hidden.max(dim=1)
print(idx2char[idx.item()], end='')
loss.backward()
optimizer.step()
print(', Epoch [%d/15] loss=%.4f' % (epoch+1, loss.item()))
输出结果:
(8) 参数中加入num_layers,实现上述模型的代码:
import torch
input_size = 4
hidden_size = 4
num_layers = 1
batch_size = 1
seq_len = 5
idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]
one_hot_lookup = [[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]
inputs = torch.Tensor(x_one_hot).view(seq_len, batch_size, input_size)
labels = torch.LongTensor(y_data)
class Model(torch.nn.Module):
def __init__(self, input_size, hidden_size, batch_size, num_layers=1):
super(Model, self).__init__()
self.num_layers = num_layers
self.batch_size = batch_size
self.input_size = input_size
self.hidden_size = hidden_size
self.rnn = torch.nn.RNN(input_size=self.input_size,
hidden_size=self.hidden_size,
num_layers=num_layers)
def forward(self, input):
hidden = torch.zeros(self.num_layers,
self.batch_size,
self.hidden_size)
out, _ = self.rnn(input, hidden)
return out.view(-1, self.hidden_size)
net = Model(input_size, hidden_size, batch_size, num_layers)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)
for epoch in range(15):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, idx = outputs.max(dim=1)
idx = idx.data.numpy()
print('Predicted: ', ''.join([idx2char[x] for x in idx]), end='')
print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))
输出结果:
(9) 使用独热向量形成的特征矩阵会非常的稀疏,占用的空间非常的大,维度比较高,而且没有考虑编码内容与内容之间的关联,使用embedding可以解决独热向量存在的问题
代码实现:
import torch
num_class = 4
input_size = 4
hidden_size = 8
embedding_size = 10
num_layers = 2
batch_size = 1
seq_len = 5
idx2char = ['e', 'h', 'l', 'o']
x_data = [[1, 0, 2, 2, 3]] # (batch, seq_len)
y_data = [3, 1, 2, 3, 2] # (batch * seq_len)
inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.emb = torch.nn.Embedding(input_size, embedding_size)
self.rnn = torch.nn.RNN(input_size=embedding_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True)
self.fc = torch.nn.Linear(hidden_size, num_class)
def forward(self, x):
hidden = torch.zeros(num_layers, x.size(0), hidden_size)
x = self.emb(x) # (batch, seqLen, embeddingSize)
x, _ = self.rnn(x, hidden)
x = self.fc(x)
return x.view(-1, num_class)
net = Model()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)
for epoch in range(15):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, idx = outputs.max(dim=1)
idx = idx.data.numpy()
print('Predicted: ', ''.join([idx2char[x] for x in idx]), end='')
print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))
输出结果: